
urban{code} |

Release Management: Solutions for Today’s Challenging Software

Development Environment

Abstract

Release Management: Automation Solutions for Today’s Software Development Environment

This white paper proposes automation as an excellent tool for Release Management (RM)

to resolve the problems associated with the handoff from Development to Production

(Operations) when creating and releasing new products using today’s Software Development

Life Cycle (SDLC). The different approaches and focus of these reduces the efficiency and

effectiveness of the process, including delays in ship dates for product releases; time wasted

tracking down and addressing code and script problems; friction between the Development and

Production teams; audit failures due to the lack of critical information about the code and

process; and additional down-time because of slower builds internally and customer

deployments externally.

Automation helps Release Management identify problems early and allows them to take

corrective action sooner; eliminating many of the problems caused by the handoff. The

automation of testing, build deployments, and error-prone manual processes, also improves

the speed of the entire SDLC. This allows RM to focus on issues unique to the current release.

A good automation solution includes several key components:

 Extensive information tracking is needed so that the Release Manager can answer all of

the questions about the release to meet today’s strict auditing and reporting

requirements. For example: What has been added? What has been changed? What

tools have been used? What problems have been fixed? How do you know that the

“right stuff” has been handed off to Production?

 Test automation to remove error-prone, time-consuming manual and regression tests.

 Build automation to create reliable and repeatable deployments for all kinds of builds;

and Deployment automation for scripting, a fragile, often manual, process that leads to

time-consuming searches for bugs.

Automation in Today’s Software Development Cycle 2

urban{code} |

Introduction

The Release Manager has a difficult job. He is often the nexus in the tug-of-war between

Development and Production. He needs to be able answer all of the questions about the

release during all phases of the SLDC: What has been added? What has been changed? What

tools have been used? What problems have been fixed? How do you know that the “right

stuff” has been handed off to Production?

As a result, the handoff between Development and Production (Operations) becomes

cumbersome and results in several problems:

 Delays that are the result of flawed manual processes

 Different work environments and expectations between Development, Test and

Production

 Audit failures

 Excess downtime due to slower builds

 Time consuming script and code errors

Why is this so? Several reasons:

 Complex, interdependent software deployment cycles

 Human error

 Demand for faster, traceable, error-free releases

In a typical shop, the Release Manager is responsible for transitioning the application between

Development and Production. She gets the job done. It just takes a long time, which is a

problem when the company pressures both areas for a shorter release cycle and more frequent

releases.

This paper identifies common problems in the Release Management environment and how

automation solves these problems for today’s Release Managers.

Market Drivers

The push for automation is driven by these factors:

 Complex software deployments

 Fast software development cycles

 Different environments in Development and Production

 Stricter requirements for auditing and reporting

Automation in Today’s Software Development Cycle 3

urban{code} |

Complex software deployments

Today’s software projects are complex, interdependent software deployments that often

impact other areas of development, other teams working within the company, and other

employees and contractors working in remote offices and foreign countries.

Currently, most development efforts center on web applications. These applications hide a

number of interdependent components. This led to Service Oriented Architectures (SOA). While

an advantage of SOA can be the flexibility to update a single service, adding new features to an

application often requires modifying numerous components. Releasing these components,

even to a test environment, requires careful coordination from the Release Manager.

Otherwise migrating the release to different environments, from Development to Test, and Test

to Production, can create time-consuming delays to the product rollout.

 Figure 1 - Service Oriented Architecture (Image courtesy of ischool.tv)

Not only are the development pieces a problem, but a typical company has a number of these

back-end services used by a wide range of departments, divisions, business applications, and

products. Also, end users often interface with these services on branch kiosks, the web, or even

their mobile phones.

Automation in Today’s Software Development Cycle 4

urban{code} |

As a result, Release Management then has the seemingly impossible challenge to make sure all

elements are compatible, work together, and fulfill all essential requirements.

Faster software development cycle

The Agile methodology has changed the pace of software development, and established a new

standard for a faster development and release life cycle. In many cases, Agile has cut the

release life cycle time in half. Even companies that do not use Agile (or related methodologies)

feel pressure from customers to release the product two to three times more often than

before. The market now expects this kind of business speed, leaving IT departments scrambling

to catch up. This faster pace often leads to production failures caused by not knowing all of the

issues or applications involved with the deployment until the handoff from Development to

Production.

Stricter requirements for auditing and reporting

IT organizations are increasingly under pressure to be compliant with laws and regulations. In

the United States, the Sarbannes-Oxley Act of 2002 has created additional demand for

traceability, separation of duties, and clear process. Separation of duties concerns has further

broken up teams, ensuring that the developers and the deployment engineers are different

people. As a result, there is greater need for a clear audit trail showing that the process was

followed.

Problems

This section analyzes the challenges that today’s Release Management team faces, including:

 Manual processes

 Different environments in Development and Production

 Audit failures

 Excess downtime due to slower builds

 Time consuming code and script errors

 Shipping delays

Manual processes

These days, even the most simple software development projects involve many handoffs

between several different teams. When you combine multiple handoffs with the faster pace of

development, it leads to errors.

These complex releases, which involve updating multiple components for a given application,

have tasks that need to be done in a specific order, creating a long set of manual steps. Manual

Automation in Today’s Software Development Cycle 5

urban{code} |

deployments are generally executed by running through a checklist of steps defined in a

document. They are fundamentally risky due to human error in following the checklist, or a

chance that the checklist has not been updated, and so on. Running through this checklist can

also be slow.

In addition, if a strict process is not established and enforced, the “informal” process of not

properly checking in and out of changed code, or emailing files and solutions of active issues to

other users may take root. Users may seek out solutions from others or outside the company

for tools and techniques to help address the problems they encounter. For example: A

developer performs a build on her desktop and hands it over to a tester to validate it. The

tester then emails the files to Production for deployment. This is a Release Management

nightmare. The build process is completely opaque and key steps can be missed. Worse, since

the software is constructed on a developer’s machine, a malicious developer could introduce

arbitrary code that is not traceable to source control that performs any action.

Even the most diligent, well-intentioned user who is following a detailed deployment document

or checklist can make mistakes and these mistakes can lead to delays. Some teams recognize

that developer builds are too risky and designate engineers to perform builds on a controlled

server using a set process. Although more controlled, this process can introduce additional

bottlenecks and opportunities for miscommunication. Figure 2 shows how complex the

development process can become.

Automation in Today’s Software Development Cycle 6

urban{code} |

Figure 2 -- Manual Bug Fix & Retest Process Example

Different environments in Development and Production (Operations)

Complex software development has created a need for distinct, specialized teams to attack

separate phases of the development process. As a result, the Development, Production and

Test environments can all be different. Also, different teams may use different tools and

configurations that best meet their specific needs.

Development and Production also have competing goals. Development’s role is to create new,

innovative products quickly, which requires a risk tolerant mind-set. Production’s role is to

make sure that new products do not break the customers’ systems which lead to downtime.

This requires a risk-averse mindset. These opposing roles lead to conflict between the two

groups and often management unwittingly encourages further conflict by implementing bonus

structures that causes a clash between these teams.

Audit failures

Although the presence of many handoffs, manual processes, and different development

environments contribute to audit failures, the main cause of them is the lack of needed

information to meet the new stricter requirements for regulatory compliance.

Automation in Today’s Software Development Cycle 7

urban{code} |

Release Managers need greater awareness of these production environment changes to meet

these requirements. They also must have a clear audit trail so that they know where everything

is, who did it, and what specific changes have been made.

Excess downtime due to slower builds

The demands of Agile development insist on fast internal code changes and builds; however,

checks, processes, and testing (especially regression testing), must occur to prevent problems

and to assure successful builds for Development.

While a slower pace can be tolerated for the rare event of a production deployment, it is

painful in earlier testing environments, where waiting for deployments significantly delay the

testing of new features and the identification of defects. If an organization wants more

frequent, high-quality releases, then the organization needs to focus on improving the

efficiency of testing.

Downtime is also a nightmare for the Production team. To reduce downtime, external builds

need to be easy to roll back and be repeatable so the team can address urgent bugs and

customer outages quickly.

Time consuming code and script errors

Some IT environments develop deployment scripts independently, to automate part of this

checklist, but these scripts are often fragile and lack the ability to track what has been done and

on which machine. As the applications evolve, the configuration settings change and these

scripts become out of date and must be maintained. The overhead of maintaining these scripts

causes the team to lose some of the productivity that was gained by creating the scripts in the

first place.

When there are mistakes, they can be difficult to diagnose. The script debugging process has

become expensive and time-consuming.

Scripts help the automation of effort, but they also don't provide the control over the console

that identifies what actually went into production. This impacts the ability to do easy

remediation and reinstallation. For example, if a situation where the configuration has drifted

among various machines, the scripts don't help identify what change is causing the problem

and resolve it.

Shipping delays

When an organization has delays in Development, Testing and Production, the result is often a

missed delivery date.

Automation in Today’s Software Development Cycle 8

urban{code} |

Automation is the Answer

Implementing automation along the build, test, and production chain is a key part of the

solution. It improves the speed and control of your development process. Some people see

this as a tradeoff: If you gain speed, you lose control, or vice versa, but this is not the case.

Automating manual processes and procedures improves both speed and control.

Automation helps meet the demands of shorter development and delivery cycles that

companies need for a competitive advantage. Successful automation requires Development,

Test and Production to work together to manage risk, limit end-to-end issues and minimize

downtime.

Here are some of the ways that automation can be implemented in each phase of the SDLC.

Automation in Development

 Track code changes by identifying what has been added, what has been changed, who

made the updates, and what tools were used.

 Generate rapid builds which can be rolled-back or migrated as necessary.

 Establish a release infrastructure to manage hardware, software, network connections,

and so on for the entire SDLC.

 Use automation to establish quality standards that need to be met before turning the

build over to Test.

Automation in Test

 Track code changes by identifying what has been added, what has been changed, who

made the updates, and what tools were used.

 Use automation to establish and enforce standards that Test must meet before sending

the release over to Production.

 Perform regression tests.

 Manage the test process to substantiate that the process has been followed.

 Manage the test environment so that it closely matches both the Development and

Production environments.

 Generate fast builds to quickly implement bug fixes and updates.

Release Management in Production (Operations)

 Establish and enforce the final requirements checklist needed before the final release.

Automation in Today’s Software Development Cycle 9

urban{code} |

 Verify that the release infrastructure is still being followed and meets the requirements

for Production.

 Control production scripts that used to be maintained manually.

 Generate builds and rollback builds quickly to minimize customer downtime.

Figure 3 Bug fix and retest process with automation

Automation in Today’s Software Development Cycle 10

urban{code} |

What to Look for in an Automation Solution

The following sections provide detailed information about the criteria of a good automation
solution.

Replacement of manual and time consuming processes

This is the heart of automation. Automation eliminates the need to rely upon error-prone

manual procedures. These processes can be stored in a matrix, repeated and updated to meet

the current needs of the application environments. The added benefit is that these processes

can also be easily rolled back, migrated to new machines for load balancing, and duplicated to

new machines.

Automation also enables you to generate rapid builds. Since the build processes have been

defined already, the application blazes through the steps in the checklist the same way each

and every time, which is helpful with time-critical emergency builds.

Automation is also perfect for testing, especially regression testing. Faster testing means faster

implementation of new features and bug fixes. Engineers spend more time finding and

resolving bugs instead of performing tedious and repetitive tests.

Extensive information tracking and reporting

The manual effort used to validate that the release requirements have been met limits the

speed of a release. By automating data collection in the release management process,

organizations can identify problems earlier, resolve them sooner (while they are less expensive

to deal with), and help accelerate throughput within the SDLC.

The ideal automation solution captures all information about all components of all applications

that are going into a given release. This allows organizations to forecast what the relationships

are and which pieces need to move together. This helps with forward planning.

Detailed information about the software development process – This solution must pull all of

the information together, integrating it to show how the data relates to this release. This

information helps cut down on the overhead of compiling and coordinating that information

manually (such as through a tracking spreadsheet) at the time of release.

This solution provides data for the following objectives:

 To prove that the quality goals have been met for each phase of the release

 To know which files have been changed

 To verify that the code being delivered matches expectations, and matches the files that

have been planned

Automation in Today’s Software Development Cycle 11

urban{code} |

 To verify that only those components that were intended to be touched have been

affected

 To know who did what and when

 To know that the established process was followed

 To display all test results for the release

Ideally, the solution can trace artifacts deployed to any environment (including production) all

the way back from the exact source code. This solution also provides detailed compliance and

audit reporting to meet the needs of today’s exacting audit requirements.

Real-time visibility – It should also provide ongoing visibility for all items in the release, as the

components migrate from one environment to another. This identifies problems, such as areas

with a great deal of code churn, so that they can be analyzed and addressed earlier in the

process.

Customized milestone and tracking alerts – These help keep the team coordinated and allow

everyone to see approximately when the team will be entering different phases of

development and provide checklists of what requirements need to be achieved before reaching

that development milestone. Tracking alerts generate notifications when a component is not

meeting its dates so that these issues can be addressed, as opposed tracking it through manual

processes.

Deliverable tracking for multiple teams – For situations where several teams are working on

components that need to be released together, this component information must be tracked to

make sure that:

 If one of the teams’ schedule changes, does it impact the other teams?

 Do any of the components being worked on by one team impact any of the components

of the other?

Bridging the DevOps Gap Deployment Automation

When it is time to deploy the release to Production, automation really saves time. Where

before there was a lot of overhead to identify and fix the errors that occurred during the roll

out to Production, the ideal automation solution reduces the time it takes to deploy and the

number of errors found.

By automating the checklist so that it is run the same way every time in each environment, the

release team eliminates much of the risk inherent in the manual process. This frees engineers

to perform less rote tasks, and can be provided as a push-button service to testers and

developers who want to perform frequent deployments to their test environments. In addition,

Automation in Today’s Software Development Cycle 12

urban{code} |

since the same process is used in all environments, deployments to the live environment have

not only been tested extensively, but the deployment process has been tested as well.

Summary

Automation saves your organization time and money. It outsources tedious, error-prone tasks

and frees up engineers to do what they do best: develop new features and resolve difficult

problems. Automation provides additional visibility and accountability to the auditing process

and identifies possible problems before they occur, when they are less expensive to deal with.

Automation can reduce the tension between teams and help them work together as a cohesive

unit.

With the pressure to cut costs in the current economic climate, can anyone afford to not look

into automation as a possible solution?

Contact

For more information about how urban{code} can improve your release management process

and implement our suite of automation solutions, contact Greg Wunderle at

gaw@urbancode.com or give him a call at (216) 858-9000.

mailto:gaw@urbancode.com

